Indian Statistical Institute,Bangalore CentreB.Math.(Hons.)II Year - 2016-17, First SemesterOptimization

Final Exam Instructor: P.S.Datti **NOTE:** 17 November 2016, 2 pm -5 pm Max.Marks: 50

- (i) Answer any 5 questions. WRITE NEATLY.
- (ii) $M_n(\mathbb{R})$ denotes the set of real $n \times n$ matrices.
 - 1. (a) Let $\mathbf{A} \in M_n(\mathbb{R})$ be invertible, \mathbf{u}, \mathbf{v} be column vectors in \mathbb{R}^n and α be a real number. If $\mathbf{A} + \alpha \mathbf{u} \mathbf{v}^t$ is invertible, show, by direct verification, that

$$(\mathbf{A} + \alpha \mathbf{u} \mathbf{v}^t)^{-1} = \mathbf{A}^{-1} + \beta \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^t \mathbf{A}^{-1}$$

for appropriate β . Hence, determine all the values of α for which $\mathbf{A} + \alpha \mathbf{u} \mathbf{v}^t$ is invertible. (5)

- (b) Let \mathbf{e}_j , $1 \le j \le n$, denote the standard unit vectors in \mathbb{R}^n . Put $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^t$ for $1 \le i, j \le n$. By using (a) above or otherwise, find all real λ and μ such that the matrix $\mathbf{I} + \lambda \mathbf{E}_{1n} + \mu \mathbf{E}_{n1}$ is invertible. Find an expression for the inverse in that case. (5)
- 2. Using the singular value decomposition or otherwise, prove the following:
 - (a) Suppose \mathbf{A}, \mathbf{B} are real $m \times n$ matrices such that $\mathbf{A}^t \mathbf{A} = \mathbf{B}^t \mathbf{B}$. Show that there is an orthogonal $m \times m$ matrix \mathbf{U} such that $\mathbf{A} = \mathbf{U}\mathbf{B}$. (5)
 - (b) Suppose $\mathbf{A} \in M_n(\mathbb{R})$. Show that the eigenvalues of $\mathbf{A}^t \mathbf{A}$ and $\mathbf{A}\mathbf{A}^t$ are the same and with the same algebraic multiplicities. (5)
- 3. (a) Let $\mathbf{A} = ((a_{ij})) \in M_n(\mathbb{R})$ be a positive matrix, that is $a_{ij} > 0$ for all i, j. Suppose there is a $\lambda > 0$ and a vector $\mathbf{x} \ge \mathbf{0}$, $\mathbf{x} \ne \mathbf{0}$ such that $\mathbf{A}\mathbf{x} \ge \lambda \mathbf{x}$, $\mathbf{A}\mathbf{x} \ne \lambda \mathbf{x}$. Show that there is a vector $\mathbf{y} \ge \mathbf{0}$, $\mathbf{y} \ne \mathbf{0}$ such that $\mathbf{A}\mathbf{y} > \lambda \mathbf{y}$. (5)
 - (b) Suppose $\mathbf{A} \in M_n(\mathbb{R})$ is a non-negative, irreducible matrix. Let $\rho = \rho_{\mathbf{A}}$ be the the eigenvalue of \mathbf{A} such that ρ equals the spectral radius of \mathbf{A} . If \mathbf{x} is a non-zero real or complex n-vector such that $(\mathbf{A} \rho \mathbf{I})^2 \mathbf{x} = \mathbf{0}$, show that $(\mathbf{A} \rho \mathbf{I})\mathbf{x} = \mathbf{0}$. (5)

- 4. (a) Show that 1 is the dominant eigenvalue of the doubly stochastic matrix $\mathbf{A} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \end{pmatrix}$ and hence find the limit $\lim_{k \to \infty} \mathbf{A}^k$. (5)
 - (b) Suppose $\mathbf{A} \in M_n(\mathbb{R})$ is a non-negative, irreducible matrix and $\mathbf{B} \in M_n(\mathbb{R})$ is a non-negative matrix such that $\mathbf{A} \mathbf{B}$ is also a non-negative matrix. If $r(\mathbf{A})$ and $r(\mathbf{B})$ denote the spectral radii of \mathbf{A} and \mathbf{B} , respectively, show that $r(\mathbf{B}) \leq r(\mathbf{A})$, with equality holding only if $\mathbf{A} = \mathbf{B}$. (5)
- 5. (a) Solve the following using simplex method:

minimize
$$5x_1 - 8x_2 - 3x_3$$

subject to $2x_1 + 5x_2 - x_3 \le 1$
 $-3x_1 - 8x_2 + 2x_3 \le 4$
 $-2x_1 - 12x_2 + 3x_3 \le 9$
 $x_i \ge 0, i = 1, 2, 3.$

(5)

(b) Find the dual of the linear programming:

maximize $\mathbf{c}^t \mathbf{x}$, subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$,

where, **A** is an $m \times n$ real matrix and **b**, **c** are given column vectors in \mathbb{R}^m and \mathbb{R}^n respectively. In this set up, state and prove the weak duality lemma. (5)

6. (a) Let **A** be an $m \times n$ real matrix, whose rank is m; **b**, **c** are given column vectors in \mathbb{R}^m and \mathbb{R}^n respectively. Consider the following linear programming:

minimize $\mathbf{c}^t \mathbf{x}$, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$.

If $\mathbf{A} = (\mathbf{a}_1 \cdots \mathbf{a}_n)$, assume that the matrix $\mathbf{B} = (\mathbf{a}_1 \cdots \mathbf{a}_m)$ is nonsingular and that there is a vector $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{x} \ge \mathbf{0}$ satisfying $\mathbf{B}\mathbf{x} = \mathbf{b}$.

For $\varepsilon > 0$ small, consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}(\varepsilon)$, where $\mathbf{b}(\varepsilon) = \mathbf{b} + \varepsilon \mathbf{a}_1 + \cdots + \varepsilon^n \mathbf{a}_n$. Show that there is a vector $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{y} > \mathbf{0}$ satisfying $\mathbf{B}\mathbf{y} = \mathbf{b}(\varepsilon)$, for some range of $\varepsilon > 0$. (5)

(b) Consider the linear programme (P) of the form

$$\begin{array}{l} \text{minimize } \mathbf{q}^t \mathbf{z} \\ \text{subject to } \mathbf{M} \mathbf{z} \geq -\mathbf{q} \\ \mathbf{z} \geq \mathbf{0}, \end{array}$$

where $\mathbf{M} \in M_k(\mathbb{R})$ is a skew-symmetric matrix, that is, $\mathbf{M} = -\mathbf{M}^t$ and $\mathbf{q} \in \mathbb{R}^k$. Show that the problem (P) and its dual are the same. Further, show that any feasible solution of (P) is also optimal. (5)

- 7. (a) Suppose C is a convex set in \mathbb{R}^n and $k \geq 2$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are in C and t_1, \ldots, t_k are non-negative real numbers such that $t_1 + \cdots + t_k = 1$. Show that $t_1 \mathbf{x}_1 + \cdots + t_k \mathbf{x}_k$ is also in C. (2)
 - (b) Define an extreme point of a convex set in \mathbb{R}^n . (1)
 - (c) Consider the set of constraints $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$, where \mathbf{A} is a real $m \times n$ matrix of rank m and $\mathbf{b} \in \mathbb{R}^m$.
 - i. Define a basic feasible solution of the above set of constraints. (1)
 - ii. State and prove the result concerning the extreme points of the set of all feasible solutions of the above set of constraints. (2 + 4)